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Quantitative Understanding in Biology 
Module III: Linear Difference Equations 
Lecture III: A First Look at Eigenvectors 
In our work on linear dynamic systems, we have shown that a general, two-variable linear system can be 
written in the form… 

 

This system can be solved iteratively when the initial conditions x0 and y0 are specified. Such a system is 
fully described by six parameters: a11, a12, a21, a22, x0, and y0. 

More generally, and more compactly, a linear system of arbitrary size can be written in vector and 
matrix notation as… 

  Initial Conditions:  

If this system has p state variables, then M is a p x p matrix, and x is a vector of length p. The system is 
defined by p2 + p = p (p + 1) parameters. For the 2 x 2 case, p = 2 and there are, of course, six 
parameters. 

We have seen that the general solution to the two-variable system can be written as… 

 

Like its difference equation counterpart, this system also has six parameters: A1, A2, B1, B2, λ1, and λ2. 
We’ve seen that the eigenvalues (λs) are completely specified by the matrix in the difference equation 
representation of the system. 

We mentioned in passing that the As and Bs would be dependent on the initial conditions of the system; 
we’ll be digging a bit deeper into these As and Bs now. 

It is important to realize that there is no more information in the difference equation representation of a 
system and its corresponding solution in terms of As, Bs, and λs. Anything you might want to know 
about the system can be answered by either representation. The answers to some questions you might 
have (e.g., what is the long-term behavior of the system) might be more obvious when the system is 
written on one form or the other, but this is a matter of convenience of interpretation, not new 
information. The fact that both systems are fully defined by six parameters is an indication that there is 
no new information in the second representation. 
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Further reasoning along these lines tells us that the As and Bs in the above solution cannot be 
determined by the initial conditions alone. After all, the initial conditions represent two ‘pieces’ of 
information about the whole system, while the As and Bs together hold four ‘pieces’ of information. The 
extra two pieces of information needed to determine the As and Bs are, not surprisingly, found in the 
matrix M (there is no other place where this information could come from, after all). 

From our two variable linear system you can show that the ratio A1/B1 is solely determined by the 
elements of M. We won’t derive this conclusion here, but you can consult a text on linear algebra if you 
want a proof. Similarly, the ratio A2/B2 is also fixed solely by the matrix M. Those two ratios use up all of 
the information in M, and the rest of the system is defined by the initial conditions. 

Now, if A1/B1 is fixed to a value determined by M, then the direction of the vector  is fixed. Here the 

term ‘direction’ doesn’t include a sign, so (2, 2) is said to point in the same direction as (-2, -2). We’ll call 
this vector v1, and since we really know about it is its direction, we’ll (arbitrarily choose to write it such 
that its magnitude, or norm, is one. In other words, for our two variable system, the vector v1 really only 
has one ‘piece’ of information embedded in it, which is its direction. 

If we apply analogous reasoning in defining v2 to embody information about the direction of the vector 

, then we can write the solution to our two variable linear system of difference equations as… 

 

The really profound point here is that both the vs and the λs are determined solely by the matrix M, 
while the k’s embody information about the initial conditions. We say that each eigenvalue (λi) have a 
corresponding eigenvector (vi). These eigenpairs come only from the matrix defining the system, and 
not from the initial conditions. 

This solution can be generalized beyond a two parameter system. It is written as… 

 

Note that for a three parameter system, each eigenvector represents two ‘pieces’ of information. You 
can specify the direction of a vector is 3D space with only two numbers (e.g., latitude and longitude). So 
the three eigenvalues represent three ‘pieces’ of information and three eigenvectors represent six 
‘pieces’ of information. These are solely determined by the nine values in the 3 x 3 matrix in the 
difference equation formulation. The three ks in the solution will be determined with the addition 
specification of the three initial conditions of the system. 

Inspecting the solution above, you can see that the fact that the eigenvectors are determined solely by 
M has profound implications. Most importantly, the eigenvector corresponding to the dominant 
eigenvalue will give you the long term ratio of the state variables in the system. This long-term ratio is 
determined solely by the matrix, not the initial conditions. More generally, you can think of the 
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evolution or trajectory of a dynamical system as a linear combination of these characteristic vectors, 
where the weights vary over time with a growth or decay governed by their corresponding eigenvalues. 

Some Worked Examples 
Typically, eigenvalues and eigenvectors are computed numerically using a computer. This is essential for 
systems with large matrices. In MATLAB, these are computed together using commands as shown in the 
following example: 

>> alpha = 0.07; 
>> beta = 0.05; 
>> gamma = 25; 
>> M = [alpha * gamma, beta * (1 - alpha); gamma, 0] 
 
M = 
 
    1.7500    0.0465 
   25.0000         0 
 
>> [V,D] = eig(M) 
 
V = 
 
    0.0902   -0.0205 
    0.9959    0.9998 
 
 
D = 
 
    2.2636         0 
         0   -0.5136 
 

Notice that two matrices, V and D, are defined at once when you use this syntax. The diagonal elements 
of the matrix D contain the eigenvalues, and each column of the matrix V is the corresponding 
eigenvector. In the example above, which revisits our plants and seeds model from the first lecture in 

this section, the dominant eigenvalue is 2.2636, and the corresponding eigenvector is . We 

know from the eigenvalue that our model population of annual plants and seeds will grow in an 
unbounded fashion, and we now know by inspecting the eigenvector that, in the long term, the ratio of 
seeds to plants will be 11:1 (0.9959 / 0.0902 = 11.04). 

Let’s revisit our model of molecular evolution of nucleotide sequences. In the simplest model, where all 
possible mutations are equally likely, the eigenvalues and eigenvectors are computed as follows… 
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>> a = 0.01; 
>> M = [ 1-3*a a a a; a 1-3*a a a; a a 1-3*a a; a a a 1-3*a] 
 
M = 
 
    0.9700    0.0100    0.0100    0.0100 
    0.0100    0.9700    0.0100    0.0100 
    0.0100    0.0100    0.9700    0.0100 
    0.0100    0.0100    0.0100    0.9700 
 
>> [V,D] = eig(M) 
 
V = 
 
    0.3770   -0.7570    0.1866    0.5000 
   -0.8445   -0.0443    0.1866    0.5000 
    0.3668    0.6286    0.4693    0.5000 
    0.1007    0.1727   -0.8426    0.5000 
 
 
D = 
 
    0.9600         0         0         0 
         0    0.9600         0         0 
         0         0    0.9600         0 
         0         0         0    1.0000 
 

Here you can see that all of the values of the state variables (the probabilities) in the eigenvector 
corresponding to the dominant eigenvalue are equal. Note that when MATLAB computes eigenvectors, 
the norm is one, whereas for a Markov model we need to renormalize so that the sum is one… 

>> V(:,4)/sum(V(:,4)) 
 
ans = 
 
    0.2500 
    0.2500 
    0.2500 
    0.2500 
 

Exercise: Consider a model where a pair of forward and reverse mutation rates is not equal. Can you 
explain these results… 
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>> M = [ 1-4*a a a a; 2*a 1-3*a a a; a a 1-3*a a; a a a 1-3*a] 
 
M = 
 
    0.9600    0.0100    0.0100    0.0100 
    0.0200    0.9700    0.0100    0.0100 
    0.0100    0.0100    0.9700    0.0100 
    0.0100    0.0100    0.0100    0.9700 
 
>> sum(M) 
 
ans = 
 
     1     1     1     1 
 
>> [V,D] = eig(M) 
 
V = 
 
   -0.3961   -0.7071    0.0000    0.0000 
   -0.5941    0.7071    0.8165   -0.0020 
   -0.4951    0.0000   -0.4082   -0.7061 
   -0.4951    0.0000   -0.4082    0.7081 
 
 
D = 
 
    1.0000         0         0         0 
         0    0.9500         0         0 
         0         0    0.9600         0 
         0         0         0    0.9600 
 
>> V(:,1)/sum(V(:,1)) 
 
ans = 
 
    0.2000 
    0.3000 
    0.2500 
    0.2500 
 

Let’s revisit one more model we looked at briefly in the second lecture. We saw that a system with the 

matrix M =  exhibited a long-term decay with a periodic behavior. A 3D plot of 

the trajectory of the system (see notes from previous lecture) showed that after a short time, the 
system spiraled in a plane. You can understand this behavior a bit better when you look at the 
eigenvalues and eigenvectors. 
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>> M = [0.8 -0.05 -0.05; 0.05 1.0 0; 0 0.05 1.0] 
 
M = 
 
    0.8000   -0.0500   -0.0500 
    0.0500    1.0000         0 
         0    0.0500    1.0000 
 
>> [V,D] = eig(M) 
 
V = 
 
   0.9650            -0.2114 - 0.0845i  -0.2114 + 0.0845i 
  -0.2535            -0.0839 + 0.4362i  -0.0839 - 0.4362i 
   0.0666             0.8665             0.8665           
 
 
D = 
 
   0.8097                  0                  0           
        0             0.9952 + 0.0252i        0           
        0                  0             0.9952 - 0.0252i 
 

Note here that when eigenvalues are complex, the terms in the corresponding eigenvectors are also 
complex, and also come in complex-conjugate pairs. This occurs in such a way that the end result will 
always be real numbers. While an intuitive interpretation of complex eigenvectors may be illusive, you 
can see from the results above is that the norm of the real eigenvalue is much smaller than those of the 
complex eigenvalues. This tells us that after a short time, the first eigenvector will have little weight 
(because 0.8097n will diminish more quickly than the others), and we’ll be effectively left with a system 
described by the remaining two eigenpairs. Since a linear combination of any two vectors define a plane, 
we can deduce that this system will be confined to a plane after the first term dies away, and that we 
should see rotation in the plane because the remaining eigenpairs are complex. 

One Last Note 
For completeness, we need to note that there is a case we don’t consider in this course. If you see two 
identical eigenvalues, the mathematics and general form of the solutions are different. We don’t worry 
about this because, in many cases, the parameters in the matrix M are not known exactly, and to 
obtaining perfectly equal eigenvalues for a general matrix is very unlikely. However, in some cases 
nature arranges thing just so, and the structure of the matrix may dictate equal eigenvalues. If you run 
into such a case, you’ll need to refer to a text to learn how to handle it. 


	Some Worked Examples
	One Last Note

